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Outline

• Goals and Science Objectives

• NYHOPS Coastal Sensor Web Overview

• Autonomous Sensor Web Control and Resource

Management Theory

• Sensor Wed Adaptive Control Results

• Ongoing and Future Work
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CARDS Goals and Science Objectives
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Specific Goals

Concept for Control and Resource
Workflow Mgmt. of Sensor Webs

4/07

• Develop new techniques for adaptiveadaptive in-situ control,
operation, and management of multiple  resources in
heterogeneous spatially distributed sensor webs

• Event detection and prognosis from distributed sensor
measurements

 Science Goals

• Validate above technologies on coastal New York Harbor
Observation and Prediction System (NYHOPS) to
improve science returns

• Off-line science validation of NYHOPS sensor web
operational autonomy and control with CARDS

• Adapt coastal sensor web to study plumes and coastal
storm surges for faster, advanced and improved warning,
prediction and modeling

• Reduce response time, increase data quality and scientific
value

• Explore opportunities with other ongoing sensor web
projects

Technical Objectives
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Science Objectives

• Existing operational predictive models of the natural

environment cover broad spatial and temporal scales

– Difficult to identify and capture the onset and evolution of small-

scale extreme events (e.g., discharges into coastal waters, anoxia)

• Need for rapid identification and forecasting of events

• Event detection must be

automated through

model-sensor decision

support architecture

for 24/7 monitoring.
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Science Goals

• Detected events and anomalies outside of modeled range

can be used to trigger adaptive operation (faster sampling,

communication) automatically

– Adaptive control of sensor network supporting model can provide

high-resolution event modeling & detection for improved

knowledge and faster (immediate) response:

• Plume detection and tracking

• Coastal storm surge detection and tracking
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New York Harbor Observation and

Prediction System (NYHOPS) Sensor

Web
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NY Harbor Observation and Prediction System (NYHOPS)

Real-time observation and

model forecast system

designed to:

•Develop an awareness of

  present and future

  conditions in the NY

  Harbor and Bight

•Provide knowledge of the

  natural environment  that

  can be used  to assess

  variances in measured

  data for threat detection.
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Funding Agencies Partners and Collaborators
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NYHOPS

Harbor Instrument NetworkCoastal Instrument Network
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Network Architecture
- Instrument Platforms

      - Contain Multiple

        Sensors

      - Recorded on

        station logger

- Data Transmission

       - RF, Cellular, Internet

- Central Acquisition Unit

       - Pulls data into

         database

       - Model accesses

         database
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Sensor Networks: Static &

Mobile Sensors

Buoys

Mobile sensors on ships/cruise

liners

UUVs

“Point” measurements:

Water Level, T, S, met, etc.

Sensor network includes:

•Point Observations,

•Mobile non-controllable

sensors

•Mobile controlled sensors

Plus three “mobile” sensors

Osprey 

Two Nekton UUVs

Plus three “mobile” sensors

        Pioneer 

Plus three “mobile” sensors

Explorer of the Seas

And CODAR

Currents
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Need for Adaptive In-Situ Sampling

Ocean forecast model

Adaptive sampling:

UUV coordination

Event Estimation
Threat assessment

(environment, intel)

Adaptive Predictive

Controller
Mobile robot tasking

Static sensor operation

Comm. Management

Data assimilation, model improvement

Adaptive sampling

of Static Sensors

Dynamic

Assignment

Dataloggers

Sensors

Sensor Assignment 

to Datalogger

Dataloggers

Sensors

Sensor Assignment 

to Datalogger
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NYHOPS-supported Storm Surge Warning System

If surge levels are predicted

To exceed minor, moderate,

or severe flood level…

YY MM DD hh WD WSP D GST WVHT DPD APD MWD BAR ATMP WTMP

91 4 29 21 79 5.6 6.9 1.1 6.7 4.9 999 1022.6 8.9 8.6

91 4 29 22 90 3.5 4.3 1.2 5.9 5 999 1022.8 8.7 8.6

91 4 29 23 79 3.6 4.3 1.2 6.7 5.2 999 1022.1 8.7 8.6

91 4 30 0 75 3.4 4 1.1 6.7 5.2 999 1021.9 8.7 8.6

91 4 30 1 71 4.5 5.6 1 7.1 5.1 999 1022 8.9 8.6

91 4 30 2 76 4 4.6 1 7.1 5.1 999 1022.5 9 8.6

91 4 30 3 82 4 4.6 0.9 7.1 5.2 999 1021.9 8.9 8.6

91 4 30 4 82 4.8 5.5 0.8 6.7 5 999 1021.2 8.9 8.6

91 4 30 5 112 4.1 4.9 0.8 6.7 5.1 999 1020.4 9 8.6

91 4 30 6 111 2.6 3 0.8 6.2 5.1 999 1019.9 9 8.6

91 4 30 7 82 1.5 2 0.8 6.7 5.2 999 1019.6 9 8.6

91 4 30 8 48 2.8 3.3 0.9 7.1 5.3 999 1019.8 9 8.6

91 4 30 9 73 5.3 6.2 0.8 5.9 5.3 999 1019.1 8.7 8.6

91 4 30 10 93 3.4 4.1 0.8 7.1 5.3 999 1019.1 8.9 8.6

91 4 30 12 111 6.3 7 0.8 7.7 5.3 999 1017.3 9 8.6

91 4 30 13 113 5.7 6.7 0.8 6.7 5.1 999 1016.5 9.7 8.6

91 4 30 14 131 4.1 4.8 0.8 5.9 4.9 999 1015.9 9.7 8.6

91 4 30 15 123 1.6 1.9 0.8 6.2 5 999 1016.4 9.8 8.7

91 4 30 16 131 4.1 4.6 0.8 5.9 5.2 999 1015 10.3 8.7

91 4 30 17 132 4.9 5.5 0.8 7.7 5.3 999 1014.4 10.9 8.7

91 4 30 18 170 3.9 4.4 0.8 8.3 5.3 999 1013.9 10.8 8.7

91 4 30 19 169 3.1 3.5 99 99 99 999 1013.3 10.3 8.7

91 4 30 20 222 3.6 4.3 0.9 6.2 5.5 999 1012.7 10.5 8.9

91 4 30 21 261 2.9 3.5 0.9 6.2 5.6 999 1012.7 10.2 8.9

91 4 30 22 308 3.1 3.8 0.8 7.7 5.4 999 1012.6 11.2 8.9

91 4 30 23 349 2.5 2.8 0.8 6.7 5.6 999 1011.8 11.3 8.9

91 5 1 0 210 2.1 2.6 0.8 6.7 5.5 999 1012.5 10.3 8.9

91 5 1 1 200 1.5 1.9 0.8 6.2 5.4 999 1012.6 9.8 8.9

91 5 1 2 218 1 1.5 0.8 7.7 5.4 999 1012.9 9.9 8.9

91 5 1 3 28 1 1.6 0.8 8.3 5.3 999 1012.6 10.3 8.8

91 5 1 4 308 1 1.3 0.7 7.1 5.2 999 1012.7 9.5 8.7

91 5 1 5 28 3.1 3.4 0.7 5.9 5.2 999 1013.3 10.2 8.7

91 5 1 6 75 2.1 2.4 0.7 6.7 5.3 999 1013.5 10.3 8.7

91 5 1 7 114 0.9 1.7 0.7 6.7 5.4 999 1013.7 10.2 8.7

.. a  database of emergency 

management contact 

information is accessed and …

.. a tailored text message is

transmitted via pager, text

message and email  
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Sensor Web Control and Resource

Management Solution
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Sensor Web Adaptive Control

• Goal: Increase model accuracy at events of interest

– For example, for better plume tracking

• Assumption: Increasing spatial and temporal resolution of
sensors near area of interest improves model accuracy

– Improve interpolation step that feeds the model

• System Constraints

– Limited power (sensors cannot operate at highest sampling rate at
all times, or transmit high amounts of data at all times)

– Limited bandwidth (too much data at high sampling rate will
overload communication system)

– Mobile nodes very limited in supply (few in number), speed
constrained
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Communication Network for NYHOPS

• Two level hierarchical network

– sensor  relay nodes  central computer

• Assignment of sensors to relay nodes dynamic
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Relay Nodes/Dataloggers

• 15 locations

– Most along coast and at local universities

– Few in open ocean to reduce wireless transmission distance
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Types of Sensors

• Static sensors

– CODAR, satellite imagery are also modeled

as a collection of static sensors

– Control sampling rate of physical sensors

• Mobile UUVs

– Confined to harbor or continental shelf

– Control position of individual UUVs taking

into account position of other UUVs and

points of interest

• Passing cruise ships

– Pioneer, Osprey, Explorer of the Seas

– Not controlled, but sensor measurements

available

Rutgers UUV
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System Overview

• Improve accuracy of the NYHOPS measurements

via adaptive sampling

• Minimize resource utilization by adaptive sensor

network control

– Resources: energy, bandwidth

– Model Predictive Control (MPC)

• Incorporate a variety of sensor types in one

framework

– Static sensors, UUVs, ships
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Coastal Storm Surge & Plume

• 2007 “Tax day” flooding

– Unusually high rainfall in

mid-April 2007 caused a

freshwater plume

– Not predicted by historic

models

– Use real-time data from

sensors to update model

predictions

– Use adaptive control to

optimally allocate limited

resources between sensors
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Event detection

• We assume a Gaussian distribution of sensor measurements

• Difference between surface salinity and corresponding historic

mean gives confidence interval of expected measurements

Mean of compromised data Std. dev of compromised data
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Event detection

• Historic means and

deviations calculated from

compromised dataset

– Denote by p the historic mean

at location p

• Sensor location will not

match exactly with any of

the precomputed locations

– Match sensor s to nearest

location with known mean

• Event(s) = 1 if

– |xs - p | > Threshold

– xs is the measurement at sensor

s

Detected events
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Need for Sensor Network Control

• Goal achieved if all sensors sample at maximum rate

• However

– sensors are limited in their energy capacity

– network is limited by bandwidth

– sensors prone to failures

• Approach

– Adapt system resources in real-time to changing regions

of importance

• Solution: Model Predictive Control

– Mathematical optimization based controller framework
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Control Methodologies

• Model-based control

– Assume that a mathematical model of the system is available

– Given system control inputs, the corresponding outputs can be

calculated

– Evaluate the quality of different system control inputs

• MPC output is that system control which has the best relative quality

• Popular control framework for large industrial plants

• Distributed variants are also possible
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Control Methodologies

• Non model-based control

– Control output is analytically calculated from current system outputs and

desired setpoint

– No model available that relates inputs to outputs

• No explicit optimization of future control steps

– Controller results can be obtained quickly

• Popular control framework for systems with short control periods or weak

computational resources

– Robotics, embedded systems

• If an accurate model of the system is available, model-based controller can

generate optimal control quickly compared to non-model based controllers
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Model Predictive Control

• The objective function models

the quality of a candidate control

• Constraints model the physical

and resource limits of the system

• Optimal control is obtained by

constrained minimization of the

objective function at every

control step (Horizon)

OptimalControl = argmin (objectiveFunction(control))

subject to

 Constraints: system resource and physical limitations
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Features of MPC

• Lookahead capability

– Moving horizon control: The objective function can make use of a

predictive model of the system to optimize future control steps

• Environmental model of a spreading plume can be used to determine

where higher resolution sensing will be required in the future

• Online execution

– Optimal control is determined for a finite number of steps in the future,

but only the first is executed

• All aspects of the system are modeled either as part of the

objective function or constraints

– The optimization problem can be easily updates to account for

modifications to the system
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MPC for NYHOPS

• Spatiotemporal sensor web control

• All system components and parameters form part of the

optimization problem

• Control variables

• MPC output

• Objective functions

• Mathematical model of quality of a set of control variables

• Constraint equations and inequalities

• Define feasible values of control variable

• NYHOPS resources

• Static sensors

• Mobile sensors (UUVs)

• Communication network (sensors to dataloggers)
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NYHOPS Control

1. Sampling rate of sensors

– Adapts sensor resolution to environment model

output

– Intuitively: sensors close to interesting areas

sample at a higher rate

2. Position of mobile controllable sensors

– Maximize utilization of network bandwidth

– Intuitively: move UUVs to locations with high

variance

3. Assignment of sensors to dataloggers

– Maximize utilization of network bandwidth

– Intuitively: sensors associate to closest relay nodes

in order to minimize energy needed for wireless

transmission

MPC

dataloggers

UUVs
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NYHOPS Constraints

1. Minimum and maximum sensor sampling rates

2. Speed of UUVs

3. Area navigable by UUVs

• NY harbor, continental shelf

4. Energy expended in moving UUVs

5. Bandwidth of each datalogger

• Global limit on sensor sampling rate

6. Energy expended in wireless data transmission

from sensors to dataloggers
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NYHOPS MPC Inputs and Outputs

• Input

– Location of sensors

– Critical locations (output of event detection)

– Energy consumption rates of sensors

– Number and physical characteristics of UUVs

– Location of dataloggers

– Bandwidth of dataloggers

• Output

– Sampling rates of static sensors

– Positions of mobile sensors

– Assignment of static sensors to dataloggers

MPC

Outputs

Inputs

Sensors+Network

control

resources
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Objective functions for optimization

• Multi-objective optimization

– A single objective function cannot model all system features

• MPC outputs (system control) are the solutions to a
series of objective functions:

1. Minimize static sensor fusion uncertainty

– f1(ustatic)

2. Minimize UUV data fusion uncertainty

– f2(xUUV)

3. Minimize UUV energy expenditure

– f3(xUUV; xUUV
t-1)

4. Minimize wireless data transmission energy expenditure

– f4(ASxM; xstatic, xdataloggers, ustatic)
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Objective function for sensor uncertainty

• Optimal fusion of correlated sensors

– Kalman filter

• Multiple (homogeneous) sensors sample
the same environmental parameter
simultaneously

– xp denote the true state, x1, x2 ... sensor
measurements

– [x1 x2 x3] 
T = Hxp + v

– Assume H=[1 1 1]T

– v is the measurement noise with covariance
matrix R

– distance from event and distance between
sensors determine the covariance of the
measurement noise

x3x2

x1

xp
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Objective function for sensor uncertainty

• Assume that local region is wide-
sense stationary for short durations

– constant mean, correlation depends only
on distance

• Error covariance of a sensor i
depends on sampling rate and
distance from point of interest

– Denote by R error covariance

• 2 denotes the intrinsic noise in the
sensor

• Noise decreases with increasing
sampling rate

d1

d2

d3

x3x2

x1

xp

2

,

( , )

i

s i
i i

s

kd p s
R

u

+
=

d(p,s): distance between sensor

s and critical point p

us: sampling rate of sensor s
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Objective function for sensor uncertainty

• Error covariance between sensors is inversely

proportional to distance between them

• If sensors are far apart, their noise is

uncorrelated (covariance matrix becomes

diagonal)

• If multiple sensors are close together, the

information extracted is comparable to that of

a single sensor

,

1

( , )
i j

i

R
kd p s

=

d13
d12

d23

x3x2

x1

xp
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• Variance after optimal fusion given by the Kalman filter

equations

– Denote by Pt-1 the a priori estimate variance

– Residual covariance

– Kalman gain

– Updated estimate variance

• Assuming zero information initially

– Estimate variance

• Use estimate variance as objective function

– R is calculated from u and x

Objective function for sensor uncertainty

1

1

T

t
K P H S=

1

T

t
S HP H R= +

1T

t
P H R H=

1( , ) Tf H R H=u x

( ) 1t t
P I KH P=



Slide 38

Objective function for sensor uncertainty

• The sensor fusion uncertainty will
be used as the objective function
to evaluate a set of sampling rates
and sensor positions

• Earlier defined for a single point
of interest p

• Now extend to multiple points of
interest

– Mean uncertainty over all critical
points

• Critical points determined by
event detection algorithm

( ) 1
,

T

p

p

f H R H=u x

Sensor 

points of interest
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Modeling Two-Level Communication

• Dynamic sensor to datalogger assignment

• To determine a(s,m)

– a(s,m)=1 iff sensor s is assigned to datalogger m;
          = 0 otherwise

• Additional goal:

– Minimize energy spent in wireless transmissions between sensors and relays

– Both goals can be optimized by using multi-objective optimization
techniques

• Additional constraints:

– Total amount of data transmitted to a datalogger m should not exceed its
bandwidth Bm

– A sensor associates to exactly one relay

 node

( , ) 1,
m

a s m s=

( , ) ,
s m

s

u a s m B m<
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Modeling communication

• Power expended in wireless communication

– proportional to square of distance between transmitter and
receiver

• sensor and datalogger

– proportional to volume of data transmitted

• sampling rate

– Hence total power consumed is

– a denotes assignment of sensors to dataloggers, u the sensor
sampling rates, and d the distance between a sensor – datalogger
pair

2( , ) ( , )
s

s m

u a s m d s m
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Modeling UUVs

Two conflicting objective functions

1. Minimize sensor fusion uncertainty

– Use objective function used for static sensors but control the

UUV locations (instead of sampling rates)

– Estimate variance of optimal sensor fusion

– f2(xUUV) = HTR-1H

– On-diagonal terms in covariance matrix R proportional to

distance of UUV from each point of interest

– Off-diagonal terms in covariance matrix inversely proportional to

distance between UUVs

2. Minimize energy spent in moving

– Assume proportional to distance moved

– Depends on past location: f3(xUUV; xUUV
t-1)
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Multi-objective optimization

• Multiple objective functions conflict with each other

– Maximize sampling rate to reduce measurement uncertainty but
this also increases energy expenditure

• All the objective functions cannot be simultaneously
optimized

• Must use a multi-objective optimization technique

– Goal optimization

• Assign weights to different objective functions and minimize the
weighted sum; then solve as a single objective optimization

• Determining weights is not obvious

• Objective function values have to be appropriately scaled

– Lexicographic optimization

• Can be used if the objective functions have a pre-defined priority,
i.e., one is strictly more important than the other
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Multi-objective optimization

• Lexicographic optimization

– Minimize the objective functions one after the other,

starting with the most “important”

– At every successive optimization, add previously

obtained minimum objective value as a constraint

– Not necessarily pareto-optimal

• NYHOPS function priorities
1. Optimize sampling rate of static sensors

• f1(ustatic)

2. Determine locations of UUVs

• f2(xUUV) + w f3(xUUV; xUUV
t-1)

3. Assign sensors to dataloggers

• f4(ASxM; xstatic, xdataloggers, ustatic)
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NYHOPS AIST

• System overview

• Event detection

• MPC control

• Nudging

• Results

• Future Work
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Sensor locations

• 250 static sensors

• Most sensors are close to the coast
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Dataloggers / Relay Points

• 15 locations

– Most along coast and at local universities

– Few in open ocean to reduce wireless transmission distance
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Paths of cruise ships

• Not controlled; assume that data available along path
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Comparison of uniform sampling and MPC

with event detection
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Effect of number of UUVs and ships
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Event detections: 1 UUV
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Sampling rates: 1 UUV
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Assignment: 1 UUV
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UUV Motion: 1 UUV
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Sampling rates: 4 UUVs
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Assignment: 4 UUVs
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UUV Motion: 4 UUVs
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Google Earth NYHOPS Visualization
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Future Sensor Web Work

• Incorporating other (remote and in-situ) data sources

– The MPC framework general enough that different sensor sources can

be incorporated into the mathematical model

– Satellite data can be incorporated into the control framework. MPC

controller can generate task lists for remote satellites

– Incorporate satellite data to re-task in-situ instruments/sensors

• Distributed control and resource management

– The current MPC formulation is centralized – all sensor and network

parameters have to be available at a central location and resulting

controls have to be transmitted back to the sensors.

– In Distributed MPC, the minimization of the objective function is

performed at multiple sites simultaneously. Each node processes its

local portion of the objective function, only exchanging results with

neighboring nodes
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Future Sensor Web Work

• Real-time operation

– The current implementation of the MPC framework is
computationally expensive. Determining approximate
solutions to the optimization problems will speed up the
controller with a relatively small decrease in the quality of
results

• Predictive control

– One of the main advantages of MPC-based control is the
ability to incorporate a predictive model of the
system/environment into the controller’s formulation.
This enables resources to be optimized taking into account
the locations of critical events that are expected to occur
in the near future
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Future Sensor Web Work

• Ongoing: Google Earth Interface for NYHOPS Website

• Integration of sensor web control into NYHOPS

– Real-time tests


